Recycling of Polyurethane Foams

Recycling of Polyurethane Foams

von: Sabu Thomas, Ajay Vasudeo Rane, Krishnan Kanny, Abitha VK, Martin George Thomas

Elsevier Reference Monographs, 2018

ISBN: 9780323511346 , 146 Seiten

Format: ePUB, PDF

Kopierschutz: DRM

Mac OSX,Windows PC für alle DRM-fähigen eReader Apple iPad, Android Tablet PC's Apple iPod touch, iPhone und Android Smartphones

Preis: 175,00 EUR

eBook anfordern eBook anfordern

Mehr zum Inhalt

Recycling of Polyurethane Foams


 

Recycling of Polyurethane Foams introduces the main degradation/depolymerization processes and pathways of polyurethane foam materials, focusing on industrial case studies and academic reviews from recent research and development projects. The book can aid practitioners in understanding the basis of polymer degradation and its relationship with industrial processes, which can be of substantial value to industrial complexes the world over. The main pathways of polymer recycling via different routes and industrial schemes are detailed, covering all current techniques, including regrinding, rebinding, adhesive pressing and compression moulding of recovered PU materials that are then compared with depolymerization approaches.
The book examines life cycle assessment and cost analysis associated with polyurethane foams waste management, showing the potential of various techniques. This book will help academics and researchers identify and improve on current depolymerization processes, and it will help industry sustainability professionals choose the appropriate approach for their own waste management systems, thus minimizing the costs and environmental impact of their PU-based end products.
  • Offers a comprehensive review of all polyurethane foam recycling processes, including both chemical and mechanical approaches
  • Assesses the potential of each recycling process
  • Helps industry-based practitioners decide which approach to take to minimize the cost and environmental impact of their end product
  • Enables academics and researchers to identify and improve upon current processes of degradation and depolymerization