Mathematical and Theoretical Neuroscience - Cell, Network and Data Analysis

von: Giovanni Naldi, Thierry Nieus

Springer-Verlag, 2018

ISBN: 9783319682976 , 255 Seiten

Format: PDF, Online Lesen

Kopierschutz: Wasserzeichen

Mac OSX,Windows PC für alle DRM-fähigen eReader Apple iPad, Android Tablet PC's Online-Lesen für: Mac OSX,Linux,Windows PC

Preis: 53,49 EUR

eBook anfordern eBook anfordern

Mehr zum Inhalt

Mathematical and Theoretical Neuroscience - Cell, Network and Data Analysis


 

Preface

6

Contents

8

About the Authors

10

From Single Neuron Activity to Network Information Processing: Simulating Cortical Local Field Potentials and Thalamus Dynamic Regimes with Integrate-and-Fire Neurons

11

1 The Map and the Territory

12

2 Simulating Local Field Potential with Integrate and Fire Neurons

14

2.1 Problems and Solutions

14

2.2 Combining Integrate-and-Fire Neurons and Morphological Models

15

2.3 Combining IFN Networks and Morphological Simulations

18

3 Integrate and Fire Neurons Model of the Thalamus

23

3.1 Thalamic Neurons Modeling

26

3.2 Integrate-and-Fire Model of the Thalamus Reproduces Sleep/Wake Information Processing Transition

27

3.3 Perspectives

30

References

31

Computational Modeling as a Means to Defining Neuronal Spike Pattern Behaviors

34

1 Introduction

34

2 Computational Model of a Neuron

35

2.1 Neuro-computational Properties

36

2.2 Biophysically Meaningful Models

37

2.3 Integrate and Fire (IF) Models

38

2.4 Izhikevich Model

39

3 Spike Pattern Behaviors

40

4 Evolutionary Algorithm as a Tool for Modeling Neuronal Dynamics

42

4.1 Model Optimization Using the EA

42

4.2 Feature-Based Fitness Function

43

4.3 Fitness Landscape with a Feature Based Function

44

5 Modeling Spike Pattern Behaviors

47

5.1 Optimization Objectives with a Behavior

47

5.2 Parameter Space Exploration

48

6 Summary

50

References

50

Chemotactic Guidance of Growth Cones: A Hybrid Computational Model

53

1 Introduction

54

2 Methods

54

2.1 Evolution of Intracellular Chemical Fields Within the GC Domain

54

2.2 Computational Model of Axonal Outgrowth Guided by Chemotaxis

56

2.3 Quantitative Evaluation of Growth Cone Model Performance

58

3 Results

59

3.1 Diffusion-Driven Instability

59

3.2 In Silico Paths of Outgrowing Axons

59

3.3 Quantitative Assessment of the Axonal Chemoattractive Response

60

3.4 Quantitative Assessment of Axonal Outgrowth in Control Conditions

62

3.5 Qualitative Predictions of Axonal Counterintuitive Behaviours

62

4 Discussion

64

References

65

Mathematical Modelling of Cerebellar Granular Layer Neurons and Network Activity: Information Estimation, Population Behaviour and Robotic Abstractions

68

1 Introduction

68

2 Methods

71

2.1 Single Neuron Modeling

71

2.2 Cerebellar Granular Layer Information Processing

73

2.3 Model Based Methods for Hemodynamic Response

74

2.3.1 Balloon Model Based Prediction

75

2.3.2 Modified Windkessel Model Based Prediction

76

2.4 Evoked Local Field Potentials and Neural Mass Model

77

2.4.1 Cerebellum Granular Layer Neural Mass Model with Mossy Fibers Input Patterns

77

2.4.2 Reconstruction of Local Field Potential from Spiking Models

78

3 Spiking Neural Network Based on Cerebellum for Kinematics

79

4 Results

80

4.1 Estimation of MI at MF-GrC Relay

80

4.2 Variations in BOLD Response Measured Using Balloon Model and Modified Windkessel Model (MFWM)

82

4.3 Simulating Extracellular Potentials Recordings in Neural Mass Model (NMM) and Spiking Neural Network (SNN)

83

4.4 Optimized Kinematic Control Using SNN

84

5 Discussion

86

6 Conclusion

88

References

88

Bifurcation Analysis of a Sparse Neural Network with Cubic Topology

93

1 Introduction

93

2 Materials and Methods

95

3 Results

96

3.1 Primary Branch and Eigenvalues

96

3.1.1 Stationary Solutions

96

3.1.2 Limit-Point Bifurcations

98

3.1.3 Cusp Bifurcation

98

3.1.4 Branching-Point Bifurcations

99

3.2 Secondary Branches

100

3.2.1 Stationary Solutions

100

3.2.2 Limit-Point and Cusp Bifurcations

102

4 Discussion

102

References

103

Simultaneous Jumps in Interacting Particle Systems: From Neuronal Networks to a General Framework

105

1 Introduction

105

2 Mean Field Models in Neuroscience

106

2.1 Neuroscience Models with Simultaneous Jumps

106

3 A General Mean Field Model with Simultaneous Jumps

108

3.1 The Microscopic Dynamics

108

3.2 The Macroscopic Process

111

3.3 Assumptions on Coefficients

112

3.4 Propagation of Chaos and Rate of Convergence

114

References

115

Neural Fields: Localised States with Piece-Wise Constant Interactions

117

1 Introduction

117

2 Neural Fields in Circular Geometries: Top Hat Interactions

119

2.1 Construction

120

2.2 Stability

122

3 Discussion

124

Appendix: Circular Geometry for a Top Hat Kernel

124

References

126

Mathematical Models of Visual Perception Basedon Cortical Architectures

128

1 Introduction

128

2 The Mathematical Model

130

2.1 Lifting of the Stimulus in the Cortical Space

130

2.2 The Connectivity Kernels and the Affinity Matrix

130

2.3 Spectral Clustering and Perceptual Units

134

3 Numerical Simulations and Results

134

3.1 Numerical Approximations of the Kernels

134

3.2 Emergence of Percepts

135

4 Conclusions

137

References

137

Mathematical Models of Visual Perception for the Analysis of Geometrical Optical Illusions

139

1 Introduction

140

2 The Mathematical Model: Neurogeometry of the Primary Visual Cortex

142

2.1 The Set of Simple Cells Receptive Profiles

142

2.2 Output of Receptive Profiles

142

2.3 Hypercolumnar Structure

143

2.4 Cortical Connectivity

144

3 The Neuro-Mathematical Model for GOIs

145

3.1 Output of Simple Cells and Connectivity Metric

145

3.2 From Metric Tensor Field to Image Distortion

147

3.2.1 Strain Tensor: Displacement Vector Field

147

3.2.2 Poisson Problems: Displacement

148

4 Numerical Simulations and Results

149

4.1 Perceived Deformation in GOIs

149

5 Conclusion and Future Works

151

References

152

Exergaming for Autonomous Rehabilitation

154

1 Introduction

154

2 Methodology

155

3 Discussion

160

4 Conclusion

162

References

162

E-Infrastructures for Neuroscientists: The GAAIN and neuGRID Examples

164

1 Introduction

165

2 Methods

166

3 Results

175

4 Discussion

176

References

177

Theory and Application of Nonlinear Time Series Analysis

180

1 Introduction

180

2 Dynamical Systems

181

2.1 Attractors

181

2.2 Equivalence Class

183

3 Embedding of Time Series

184

4 Determination of Parameters for Phase Space Reconstruction

186

4.1 Lag Time

186

4.2 Embedding Dimension

188

5 Nonlinear Predictability

190

6 Geometrical and Dynamical Characterization of Attractors

193

7 Multivariate Time Series: Quantifying the Level of Interdependence

194

7.1 Cross Correlation

195

7.2 Mutual Information

195

7.3 Spearman Rank Coefficient

196

7.4 Slope Phase Coherence

198

8 Measures of Coupling Directionality

198

8.1 Granger Causality

199

8.2 Symbolic Transfer Entropy

200

9 Conclusions

201

References

202

Measures of Spike Train Synchrony and Directionality

204

1 Introduction

205

2 Measures of Spike Train Synchrony

206

2.1 Adaptive ISI-Distance

207

2.2 Adaptive SPIKE-Distance

208

2.3 Adaptive SPIKE-Synchronization

210

2.4 Selecting the Threshold Value

214

3 Measures of Spike Train Directionality

215

3.1 SPIKE-Order and Spike Train Order

217

3.2 Synfire Indicator

220

3.3 Statistical Significance

222

4 Outlook

223

References

224

Space-by-Time Tensor Decomposition for Single-Trial Analysis of Neural Signals

226

1 Introduction

226

2 Computational Framework Formulation

228

3 Space-by-Time Non-negative Matrix Factorization Algorithm

229

4 Variants of the Decomposition Algorithm

230

4.1 Orthogonality Constraints

231

4.2 Discrimination Objective

231

4.3 Application to Signed Data

232

5 Assessment of the Decompositions

235

5.1 Approximation Power of the Decomposition

235

5.2 Discrimination Power of the Decomposition

235

5.3 Model Order Selection

236

6 Example Application: Retinal Ganglion Cells

236

7 Software Implementation

238

8 Conclusions

238

References

239

Inverse Modeling for MEG/EEG Data

241

1 Introduction

241

2 Data Formation

243

3 The Inverse Problem

245

3.1 Classification of Inverse Methods

247

3.2 Methods for the Distributed Model

248

3.2.1 Minimum Norm Estimate (MNE)

248

3.2.2 Mixed Norm Estimates

248

3.2.3 Kalman Filtering

249

3.3 Methods for the Dipolar Model

250

3.3.1 Global Optimization Methods

250

3.3.2 Bayesian Monte Carlo Methods for Static Dipoles

250

3.3.3 Bayesian Monte Carlo Methods for Dynamic Dipoles

251

4 An Application to Epilepsy

251

5 Conclusions

252

References

253