Machining Difficult-to-Cut Materials - Basic Principles and Challenges

von: Hossam A. Kishawy, Ali Hosseini

Springer-Verlag, 2018

ISBN: 9783319959665 , 253 Seiten

Format: PDF, Online Lesen

Kopierschutz: Wasserzeichen

Mac OSX,Windows PC für alle DRM-fähigen eReader Apple iPad, Android Tablet PC's Online-Lesen für: Mac OSX,Linux,Windows PC

Preis: 149,79 EUR

eBook anfordern eBook anfordern

Mehr zum Inhalt

Machining Difficult-to-Cut Materials - Basic Principles and Challenges


 

Preface

6

Contents

8

1 Introduction

14

Abstract

14

1.1 Historical Background

14

1.1.1 Stone Age

14

1.1.2 Bronze Age

15

1.1.3 Iron Age

16

1.2 Modern Engineering Materials

17

1.2.1 Steels

18

1.2.2 Titanium and Its Alloys

18

1.2.3 Superalloys

19

1.2.4 Metal Matrix Composites (MMCs)

19

1.2.5 Ceramics

19

1.3 Superior Characteristics, Major Challenges

20

Reference

20

2 Hardened Steels

21

Abstract

21

2.1 Introduction

21

2.1.1 Heat Treatment

22

2.1.2 Cryogenic Treatment

23

2.1.3 Case Hardening

24

2.1.3.1 Carburizing

24

2.1.3.2 Gas Nitriding

25

2.1.3.3 Induction Hardening

25

2.1.3.4 Flame Hardening

25

2.2 Historical Background and Evolution of Hardened Steels

26

2.3 Metallurgy of Hardened Steels

28

2.4 Characteristics of Hardened Steels

31

2.4.1 High Indentation Hardness

31

2.4.2 Low Ductility (Brittleness)

31

2.4.3 High Hardness/E-modulus Ratio

31

2.4.4 Corrosion Sensitivity

32

2.5 Industrial Applications of Hardened Steels

32

2.5.1 Applications of Case-Hardened Steels

33

2.5.2 Applications of Induction Hardened Steels

33

2.5.3 Applications of Carburized Steels

34

2.6 Challenges in the Machining of Hardened Steels

35

2.7 Hard Turning

37

2.7.1 Hard Turning as an Alternative for Grinding

38

2.7.2 Special Features of Hard Turning

39

2.7.3 Rigidity Imposed Limitations in Hard Turning

41

2.7.4 Surface Quality and Integrity

41

2.7.4.1 Formation of White Layer

41

2.7.4.2 Residual Stresses

44

2.7.4.3 Material Side Flow

45

2.8 Mechanics of Chip Formation During Hard Turning

46

2.9 Influential Factors on Chip Formation During Hard Turning

50

2.9.1 Nose Radius

50

2.9.2 Edge Preparation and Tool Condition

50

2.9.3 Feed

51

2.10 Dynamics of Chip Formation

54

2.11 Cutting Forces During Hard Turning

55

2.12 Appropriate Tool Materials for Hard Turning

56

2.12.1 CBN and PCBN Tools

57

2.12.2 Ceramic Tools

60

2.12.3 Cermet (Solid Titanium Carbide) Tools

61

2.13 Surface Finish in Hard Turning

62

2.14 Environmentally Friendly Hard Turning

63

2.15 Hard Milling

63

2.16 Concluding Remarks

64

References

64

3 Titanium and Titanium Alloys

67

Abstract

67

3.1 Introduction

67

3.2 Historical Background and Evolution of Titanium

69

3.3 Metallurgy of Titanium

71

3.3.1 Alpha (?) Alloys

73

3.3.2 Near-Alpha (?) Alloys

73

3.3.3 Alpha-Beta (??+??) Alloys

74

3.3.4 Metastable Beta (?) Alloys

74

3.3.5 Beta (?) Alloys

75

3.3.6 Titanium Aluminides

75

3.4 Characteristics of Titanium and Its Alloys

76

3.5 Industrial Applications of Titanium and Its Alloys

80

3.5.1 Aerospace Applications

80

3.5.2 Chemical and Petrochemical Applications

83

3.5.3 Automotive Applications

84

3.6 Challenges in the Machining of Titanium and Its Alloys

86

3.6.1 Poor Thermal Conductivity

87

3.6.2 Chemical Reactivity

89

3.6.3 Low Modulus of Elasticity

89

3.6.4 Hardening Effect

90

3.7 Mechanics of Chip Formation

90

3.7.1 Chip Segmentation Under Adiabatic Shear

92

3.8 Appropriate Tool Materials and Modes of Tool Wear

97

3.8.1 HSS Tools

98

3.8.2 Carbide Tools

99

3.8.3 Ceramic Tools

101

3.8.4 CBN and PCBN Tools

101

3.8.5 Diamond Tools

102

3.9 Application of Coolant in the Machining of Titanium

103

3.9.1 Utilization of Nano-cutting Fluids

104

3.10 Concluding Remarks

105

References

106

4 Superalloys

109

Abstract

109

4.1 Introduction

109

4.2 Historical Background and Evolution of Superalloys

111

4.3 Metallurgy of Superalloys

115

4.3.1 Phases of Superalloys

117

4.3.1.1 Gamma (?) Phase

117

4.3.1.2 Gamma Prime (??) Phase

117

4.3.1.3 Gamma Double Prime (??) Phase

118

4.3.1.4 Carbides

118

4.3.2 Strengthening Mechanisms

118

4.4 Detailed Classification of Superalloys

120

4.4.1 Iron-Based Superalloys

121

4.4.2 Nickel-Based Superalloys

123

4.4.3 Cobalt-Based Superalloys

125

4.5 Characteristics of Superalloys

127

4.5.1 Tensile and Yield Properties

127

4.5.2 Creep Resistance

127

4.5.3 Fatigue Resistance

127

4.5.4 Corrosion Resistance

127

4.6 Industrial Applications of Superalloys

128

4.6.1 Application of Superalloys in Gas Turbines and Jet Engines

128

4.7 Challenges in the Machining of Superalloys

131

4.7.1 High Hot Hardness and Strength

133

4.7.2 High Dynamic Shear Strength

133

4.7.3 Low Thermal Conductivity

134

4.7.4 Formation of Built-up Edge

135

4.7.5 Austenitic Matrix and Work Hardening During Machining

135

4.7.6 Abrasiveness

136

4.8 Mechanics of Chip Formation in Machining of Superalloys

136

4.9 Tool Materials for Conventional Machining of Superalloys

139

4.9.1 Appropriate Cutting Tools for Turning of Superalloys

141

4.9.2 Appropriate Cutting Tools for Milling of Superalloys

143

4.9.3 Modes of Tool Wear When Machining Superalloys

143

4.10 Application of Coolant in the Machining of Superalloys

145

4.11 Concluding Remarks

146

References

147

5 Metal Matrix Composites

150

Abstract

150

5.1 Introduction

150

5.2 Historical Background and Evolution of MMCs

152

5.2.1 First Generation

153

5.2.2 Second Generation

153

5.2.3 Third Generation

154

5.2.4 Fourth Generation

155

5.3 Characteristics of Metal Matrix Composites

156

5.3.1 High-Strength and Improved Transverse Properties

156

5.3.2 High Stiffness and Toughness

157

5.3.3 High Operational Temperature

157

5.3.4 Low Sensitivity to Surface Defects

157

5.3.5 Good Thermal and Electrical Conductivity

157

5.4 Classifications of Metal Matrix Composites

158

5.4.1 Classification of MMCs Based on Matrix Materials

158

5.4.1.1 Aluminum Alloys

158

5.4.1.2 Titanium Alloys

158

5.4.1.3 Magnesium Alloys

159

5.4.1.4 Cobalt

159

5.4.1.5 Copper

159

5.4.1.6 Silver

159

5.4.1.7 Nickel

159

5.4.1.8 Niobium

160

5.4.1.9 Intermetallic Compounds

160

5.4.2 Classification of MMCs Based on the Type of Reinforcement

160

5.4.2.1 Particle-Reinforced MMCs

161

5.4.2.2 Discontinuous Fiber-Reinforced MMCs

161

5.4.2.3 Continuous Fiber and Sheet-Reinforced MMCs

162

5.5 Industrial Applications of Metal Matrix Composites

163

5.5.1 Aerospace Applications

164

5.5.2 Automotive and Transportation Applications

165

5.6 Challenges in the Machining of Metal Matrix Composites

165

5.6.1 Machining of Particulate-Reinforced MMCs

166

5.6.1.1 Chip Formation in the Machining of Particulate-Reinforced MMCs

170

5.6.1.2 Cutting Forces in the Machining of Particulate-Reinforced MMCs

172

5.6.2 Machining of Fiber-Reinforced MMCs

176

5.6.2.1 Chip Formation When {{\varvec \uptheta}} = {\bf 0^\circ}

177

5.6.2.2 Chip Formation When {{\bf 0}}^\circ \le{\varvec \theta}\le {{\bf 90}}^\circ

178

5.6.2.3 Chip Formation When {\bf 90^\circ} \le{\varvec \theta}\le {\bf 180^\circ}

179

5.7 Appropriate Tools Materials and Modes of Tool Wear

179

5.7.1 Analytical Modeling of Wear Progression

183

5.8 Concluding Remarks

185

References

186

6 Ceramics

189

Abstract

189

6.1 Introduction

189

6.2 Historical Background and Evolution of Ceramics

190

6.3 Material Structure of Ceramics

193

6.3.1 Polycrystalline Ceramics Made by Sintering

194

6.3.2 Glass

194

6.3.3 Glass Ceramics

194

6.3.4 Single Crystals of Ceramic Compositions

194

6.3.5 Chemical Synthesis or Bonding

195

6.3.6 Natural Ceramics

195

6.4 Characteristics of Ceramic Materials

195

6.4.1 Brittleness

195

6.4.2 Poor Electrical and Thermal Conductivity

195

6.4.3 Compressive Strength

196

6.4.4 Chemical Insensitivity

196

6.5 Industrial Applications of Ceramics

196

6.5.1 Structural Applications

196

6.5.2 Electronic Applications

197

6.5.3 Bio-Applications

197

6.5.4 Coating Applications

198

6.5.5 Composites Applications

198

6.6 Challenges in the Machining of Ceramics

199

6.7 Mechanism of Chip Formation

200

6.8 Turning of Ceramic Materials

201

6.9 Grinding of Ceramic Materials

203

6.10 Ultrasonic Machining of Ceramic Materials

204

6.11 Abrasive Water Jet Machining of Ceramic Materials

206

6.12 Electrical Discharge Machining of Ceramic Materials

209

6.13 Laser Machining of Ceramic Materials

211

6.14 Application of Coolant in the Machining of Ceramics

212

6.15 Concluding Remarks

212

References

213

7 Environmentally Conscious Machining

215

Abstract

215

7.1 Introduction

216

7.2 Traditional Cutting Fluids

218

7.2.1 Non-Water-Miscible Cutting Fluids

219

7.2.2 Water-Miscible and Water-Based Cutting Fluids

220

7.2.3 Gaseous, Air, and Air–Oil Mists (Aerosols) Cutting Fluids

223

7.2.4 Cryogenic Cutting Fluids

223

7.3 Advanced Nano-Cutting Fluids

223

7.3.1 Characterization and Performance of Nano-Cutting Fluids

225

7.3.2 Challenges in the Application of Nano-Cutting Fluids

225

7.4 Delivery Methods of Cutting Fluids

226

7.4.1 Low-Pressure Flood Cooling

226

7.4.2 High-Pressure Flood Cooling

227

7.4.3 High-Pressure Through-Tool Cooling

228

7.4.4 Mist Cooling

228

7.5 Cutting Fluids and Their Consequent Health Hazards

228

7.5.1 Toxicity

229

7.5.2 Dermatitis

229

7.5.3 Respiratory Disorders

230

7.5.4 Microbial Disorders

230

7.5.5 Cancer

231

7.6 Environmental Considerations in Machining

231

7.6.1 Machining with Minimum Quantity Lubrication (MQL)

233

7.6.2 Dry Machining

234

7.7 Special Cutting Tools

236

7.7.1 Self-propelled Rotary Tools

237

7.7.1.1 Self-Cooling Feature of Rotary Tools

240

7.8 Machining Titanium and Superalloys Using Rotary Tools

241

7.9 Machining Hardened Steels Using Rotary Tools

243

7.10 Concluding Remarks

244

References

245

Index

249