Advanced Techniques for Testing of Cement-Based Materials

Advanced Techniques for Testing of Cement-Based Materials

von: Marijana Serdar, Ivan Gabrijel, Dirk Schlicke, Stéphanie Staquet, Miguel Azenha

Springer-Verlag, 2020

ISBN: 9783030397388 , 246 Seiten

Format: PDF, Online Lesen

Kopierschutz: Wasserzeichen

Mac OSX,Windows PC für alle DRM-fähigen eReader Apple iPad, Android Tablet PC's Online-Lesen für: Mac OSX,Linux,Windows PC

Preis: 160,49 EUR

eBook anfordern eBook anfordern

Mehr zum Inhalt

Advanced Techniques for Testing of Cement-Based Materials


 

Preface

6

Contents

8

1 Acoustic Emission Characterization of Fresh Cement-Based Materials

9

1.1 Introduction

9

1.2 Overview of Acoustic Emission

11

1.3 Related Literature

12

1.4 Discussion

22

1.5 Conclusions

27

References

27

2 Ultrasonic Techniques for Determination and Monitoring Various Properties of Cementitious Materials at Early Ages

31

2.1 Introduction

32

2.2 Ultrasonic Techniques for Measuring Early Age Properties of CBM

33

2.2.1 Theoretical Basics

33

2.2.2 Different Types of Ultrasonic Techniques

53

2.3 Monitoring of CBMs at Early Ages

58

2.3.1 Determination of Different Time Periods Within Structure Formation Process

58

2.3.2 Determination of Setting Process

60

2.3.3 Monitoring of Microstructural Properties

65

2.3.4 Ultrasonic Testing and Early Age Mechanical Properties

66

2.4 Conclusion

70

References

71

3 Elastic Modulus Measurement Through Ambient Response Method

77

3.1 Introduction

77

3.2 EMM-ARM Testing Apparatus

78

3.2.1 Concrete Testing

79

3.2.2 Mortar Testing

79

3.2.3 Cement Paste Testing

79

3.3 Frequency Identification

81

3.3.1 Operational Modal Analysis (OMA)

83

3.3.2 Experimental Modal Analysis (EMA)

85

3.4 E-modulus Estimation

88

3.5 Comparison of EMM-ARM with Other Methods

90

3.5.1 Concrete

90

3.5.2 Cement Paste

93

3.6 Repeatability of E-modulus Estimations

95

3.6.1 Concrete

96

3.6.2 Cement Paste

98

3.7 Accuracy of the E-modulus Estimations

99

3.7.1 Concrete

99

3.7.2 Cement Paste

101

3.8 Conclusions

101

References

102

4 Monitoring the Viscoelastic Behaviour of Cement Based Materials by Means of Repeated Minute-Scale-Duration Loadings

107

4.1 Introduction

107

4.2 Physical Mechanisms of the Basic Creep

109

4.3 Development of a Test Protocol

110

4.3.1 Preliminary Observations Performed on Creep Test of Long Duration

111

4.3.2 Testing Devices

114

4.3.3 Parameters of the Protocol

121

4.4 Results and Data Treatment

123

4.4.1 Data Treatment

124

4.4.2 Impact of the Devices on the Determination of the Elastic and Creep Properties

128

4.4.3 Microstructural Interpretation of the Results

132

4.5 Application of the Repeated Minute-Scale-Duration Loadings

134

4.5.1 Modelling Basic Creep Since Setting Time

134

4.5.2 Identification of Concrete Properties by Means of Multiscale Modelling

135

4.6 Conclusion and Outlook

137

References

137

5 Monitoring of the Thermal and Autogenous Strain

143

5.1 Introduction

144

5.2 Physical Mechanisms

145

5.2.1 Autogenous Deformation

145

5.2.2 Coefficient of Thermal Expansion

148

5.2.3 Correlation Between the Development of the Autogenous Strain and the CTE

151

5.3 Test Setup

152

5.3.1 Cement Paste and Mortar

153

5.3.2 Concrete

154

5.4 Test Protocol and Data Treatment

158

5.4.1 Review of the Literature

158

5.4.2 Development of a New Test Protocol for Concrete

162

5.5 Investigations and Results

169

5.5.1 Sensitivity Analysis on the Determination of the CTE Induced by the Data Processing

169

5.5.2 Extension to Cement Paste and Mortar Scale

174

5.5.3 Correlation Between the Early Development of the CTE and the Autogenous Strain and the Setting

175

5.5.4 Further Recommendation for the Monitoring of the CTE and Autogenous Strain at Very Early Age

176

5.6 Conclusion and Outlook

176

References

177

6 Testing Concrete Since Setting Time Under Free and Restrained Conditions

185

6.1 Introduction

185

6.2 Test Rig Designed for the Study of the Risk of Cracking of Cement Based Materials

189

6.2.1 Passive Restrained Shrinkage Test

189

6.2.2 Active Restrained Shrinkage Test

193

6.3 The TSTM (Temperature Stress Testing Machine)

194

6.3.1 Principle of TSTM’s

194

6.3.2 History of the Development of TSTM’s

195

6.4 Design Testing System

199

6.4.1 Test Setup

199

6.4.2 Test Protocol for the Restrained Shrinkage

205

6.5 Applications

206

6.5.1 Monitoring of the Viscoelastic Properties Since Setting

207

6.5.2 Implementation of Non-destructive Methods on a TSTM Device

207

6.5.3 Testing Concrete in Its Plastic State

208

6.5.4 Influence of Cyclic Loading/Displacement on the Hardening Process of Grout Material

208

6.5.5 Structural Scale

210

6.5.6 Degree of Restraint

210

6.6 Conclusions

211

References

212

7 Adjustable Restraining Frames for Systematic Investigation of Cracking Risk and Crack Formation in Reinforced Concrete Under Restrained Conditions

218

7.1 Introduction

219

7.2 Motivation and Concept

220

7.3 Technical Specification of the Frames

221

7.3.1 General Setup and Functionality

221

7.3.2 Passive Frame for Simulation of Hardening-Induced Stress History

226

7.3.3 Activation of the Frame for Superimposition of Hardening-Induced Stresses with Additional Stresses During Service Life

231

7.3.4 Modified Frame for Investigation of Cracking in Thick Members

233

7.4 Selected Results

236

7.4.1 General Remarks on the Testing Programme Conducted So Far

236

7.4.2 Hardening-Induced Stress History and Risk of Early Age Cracking

237

7.4.3 Superimposition of Hardening-Induced Stressing with Further Imposed Deformations Representative for Service Life

239

7.4.4 Crack Opening During Service Life

240

7.4.5 Evolution of the Restraint Force During Cracking in Thick Members with Reinforcement Near the Surface

241

7.5 Conclusion and Outlook

243

References

244